Scaling Performance Issue Detection and Diagnosis in Cloud Infrastructures

Yigong Hu!, Ze Li%, Peng Huang', Suhas Pinnamaneni?, Francis David 2, Yingnong Dang?
Murali Chintalapati?

!Johns Hopkins University

ZMicrosoft Azure

{zeli, suhasp, frdavid, yidang, muralic} @microsoft.com hyigongl @jhu.edu huang@cs.jhu.edu

Abstract

Cloud infrastructures today consist of heterogeneous soft-
ware and hardware environments to serve different work-
loads. Efficiently and accurately analyzing the performance
for these systems is of critical need. However, current per-
formance analysis methods scale poorly to handle the perfor-
mance data from modern cloud platforms and do not consider
the effect of system heterogeneity. In this paper, we present
SDiag, a scalable performance analysis tool to uncover per-
formance issues in complex heterogeneous cloud platform.
Specifically, SDiag first breaks down tracing records into dif-
ferent buckets. SDiag then analyzes and compares different
buckets to find the performance bottleneck and critical path.
Finally, SDiag provides supporting evidence to help develop-
ers effectively troubleshoot the reported performance issues.

1 Introduction

Large cloud computing platforms, such as Microsoft Azure,
serve millions of users. Rapidly uncovering and fixing per-
formance issues of the system infrastructures is critical for
ensuring user satisfactions and meeting the Service Level
Agreement (SLA). However, the ever-increasing scale and
complexity of cloud infrastructures pose significant chal-
lenges for service engineers to efficiently understand, ana-
lyze, and troubleshoot performance issues.

Although extensive solutions have been proposed to help
uncover performance issues in distributed systems (Sigel-
man and et al. 2010; Barham and et al. 2004; Kaldor and
et al. 2017; Fonseca and et al. 2007; Mace and et al. 2015;
Veeraraghavan and et al. 2016; Wang and et al. 2013), they
primarily focus on how to effectively trace or profile systems
performance across layers of software stack, e.g., through
propagating request identifiers. Analyzing the large volume
of complex performance data generated from the tracing
or profiling solutions remains challenging. Classic perfor-
mance analysis techniques (e.g., critical path analysis) and
recent cloud performance analysis solutions (Chow and et
al. 2014) assume that the execution environment of software
are stable so the systems exhibit similar performance be-
havior under the same workloads. However, many dynamic
factors can influence system performance, such as continu-
ous deployment of new code, changing configurations, user-
specific experiments, and the system environment. For ex-
ample, the performance of a virtual disk creation operations
might incur different execution times among different hard-
ware generations. As a result, a slow VM creation perfor-
mance issue might only exhibit in the requests that are ex-

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ecuted on the certain types of hardware. Therefore, without
considering the impact of dynamic factors and different ex-
ecution environments, the performance analysis can lead to
false positives or missing complex performance issues.

In this paper, we propose SDiag, a performance analysis
tool that can efficiently and accurately detect complex per-
formance issues in large cloud platforms. SDiag analyzes
the tremendous amount of performance logs and tracing re-
sults of a cloud platform in real time. It first breaks down
data into different buckets and builds the statistical call stack
for each bucket. Then SDiag applies critical path analysis in
each bucket to understand how statistically each component
impact the end-to-end latency. Afterwards, SDiag performs
data mining techniques such as anomaly detection and cor-
relation analysis to find the responsible software or hard-
ware component. Finally, SDiag reports the abnormal per-
formance behavior, the culprit component and the critical
operations in the callstack to developers.

2 Problem Statement

Modern cloud platform collects billions of performance
trace records and execution logs every day. State-of-art per-
formance analysis tools typically analyze all the perfor-
mance data together, e.g., finding the most time-consuming
operation among all the requests. However, as the per-
formance is impacted by diverse, dynamic factors in the
execution environments, blindly aggregating all the data
would hide the performance variability on different software
packages, hardware configurations, and application idiosyn-
crasies, and cause some complex performance misbehavior
to escape detection. We argue that to analyze performance
in a dynamic environment, the performance data needs to
be properly grouped in a way that can expose performance
anomalies within some specific group. Thus, we propose to
first use data mining techniques to group all the requests
that are impacted by the same factors into the same buck-
ets. Then we can apply performance analysis techniques to
each bucket to find the performance anomalies.

3 Design of SDiag

SDiag is a performance analysis tool for uncovering perfor-
mance issues resulting from complex runtime environments
in cloud platforms. The objective of SDiag is to analyze a
large volume of performance events in real time, correlate
them, identify anomalies that appear in a subset of these
events, and alert developers about the anomalies with sup-
porting evidence, and trigger actions (e.g., stopping the bad
software deployments).

SDiag Analytic Server

Operational Events Events in different buckets

*VM creation
* Disk creation °
. Preprocess events | | int

Hardware & Request Type l:

+Hardware Generation
VM version

Analytic
Dashboard | | Anomalies and associated
pivots and critical path

« Build Call Stack Forest
« Critical Path Analysis
« Bottleneck Analysi

QR 2. 9

R
6Q 66d
ééb 6o &

Alerting

Stopping bad
deployments

Figure 1: Workflow of SDiag.

Figure 1 shows the workflow of SDiag. SDiag takes op-
erational events, hardware information and request type in-
formation as the input and generates a regression alert as
the output to the developers. SDiag first groups the events
with attribute metrics that describe the origins of the events
and breaks down all the events into different buckets based
on the metrics. SDiag analytics server then aggregates all
the events in same bucket to build the statistical call stack
and apply critical path analysis and bottleneck analysis in
each buckets to locate the buggy function call stack. Finally,
SDiag detection server performs anomaly detection to find
the abnormal component and generates a report to the devel-
oper with the critical path, bucket metrics and bottleneck.

SDiag first combines each operational event with its asso-
ciated metrics such as hardware generation, software com-
ponent version and request type to generate a comprehensive
operational events table. Each entry in the comprehensive
operational event tables contains function name, execution
time, acttivityld, parentld, rootld, hardware generation, VM
type, software version. Then SDiag breaks down the event
table into separate small buckets whose events have same
hardware generation and workload type.

Since each bucket contains millions of events, SDiag
needs to aggregate all the events before performing further
analysis. SDiag first builds the calling relationship for each
request based on the activityld, parentid and rootld. Then
SDiag aggregates the call stack of each request to build a sta-
tistical call stack forest. The call stack forest is represented
as a directed acyclic graph, in which the function calls are
vertices with weight equal to 95% of the execution time of
the associated function calls. Since each bucket contains an
enormous amount of events, the statistical call tree can pre-
cisely reflect the performance of the cloud platform under a
given system environment. After creating the statistical call
stack for each bucket, SDiag performs two types of analysis
on top of the call stack forest.

For each bucket, SDiag further aggregates the perfor-
mance data into different groups based on the version
combination of all the software packages. SDiag performs
anomaly detection by comparing different groups in the
same bucket to find regression. In particular, SDiag calcu-
lates the mean of end-to-end request latency for each group
and uses the Z-score to identify the outlier groups and re-
quests. Z-score is a numerical measurement of relationship
of the latency of different versions of software components.
If a Z-score is close to 0, it indicates that the roll-out does
not introduce any performance regression. A Z-score of 1.0

would indicate that the latency is one standard deviation
away from the mean of latency of the older versions. Cur-
rently, SDiag defines outliers as the group whose Z-score
is greater than 3 (which is a commonly-used threshold that
distinguishes “unusual” values in a sample).

After the bucketing and aggregations, SDiag applies crit-
ical path analysis in each bucket to find the function call
stacks that contribute most to the long latency. Critical path
analysis is a classic technique for understanding how indi-
vidual function calls of a parallel execution impact end-to-
end latency (Wang and et al. 2013). SDiag calculates the
critical path on a per-bucket basis. It finds the longest-path
(in terms of total duration) from the first event in the request
(the initiation of the request) to the last event.

4 Deployment Status

SDiag is currently deployed and being used by an engineer-
ing team in Microsoft Azure to analyze the performance of
the tenant deployment operations. It has been running for
more than two months and successfully found a performance
regression. In one release of an Azure agent package, SDiag
found that the VM creation request has a significantly high
latency in a specific hardware generation. SDiag reported
the issue to the developer team with the supporting critical
path. The developer team confirmed that the root cause is
that the creation of a specific type of disk is done sequen-
tially rather than in parallel. The performance regression has
already existed in the Azure environment for one month but
since it only manifested in a specific hardware generation,
the current performance analysis tool can not effectively de-
tect it. This result shows that the SDiag can effectively un-
cover complex performance behavior.

SDiag currently only uses predefined metrics to bucket
performance events. However, the performance relevant fac-
tors are usually diverse and dynamic, which means pre-
defined metrics are not enough to uncover complex per-
formance issues. Our next step is to automatically find the
bucket metrics that can best identify and explain the perfor-
mance regression and perform further analysis.

References
Barham, P., and et al. 2004. Using Magpie for request extraction
and workload modelling. In OSDI "04.
Chow, M., and et al. 2014. The mystery machine: End-to-end
performance analysis of large-scale internet services. In OSDI "14.
Fonseca, R., and et al. 2007. X-trace: A pervasive network tracing
framework. In NSDI *07.
Kaldor, J., and et al. 2017. Canopy: An end-to-end performance
tracing and analysis system. In SOSP '17.
Mace, J., and et al. 2015. Pivot tracing: Dynamic causal monitoring
for distributed systems. In SOSP ’15.
Sigelman, B. H., and et al. 2010. Dapper, a large-scale distributed
systems tracing infrastructure. Technical report, Google, Inc.

Veeraraghavan, K., and et al. 2016. Kraken: Leveraging live traffic
tests to identify and resolve resource utilization bottlenecks in large
scale web services. In OSDI ’16.

Wang, X. S., and et al. 2013. Demystifying page load performance
with WProf. In NSDI ’13.

